Improved NN-JPDAF for Joint Multiple Target Tracking and Feature Extraction

نویسندگان

  • Le Zheng
  • Xiaodong Wang
چکیده

Feature aided tracking can often yield improved tracking performance over the standard multiple target tracking (MTT) algorithms with only kinematic measurements. However, in many applications, the feature signal of the targets consists of sparse Fourier-domain signals. It changes quickly and nonlinearly in the time domain, and the feature measurements are corrupted by missed detections and mis-associations. These two factors make it hard to extract the feature information to be used in MTT. In this paper, we develop a feature-aided nearest neighbour joint probabilistic data association filter (NN-JPDAF) for joint MTT and feature extraction in dense target environments. To estimate the rapidly varying feature signal from incomplete and corrupted measurements, we use the atomic norm constraint to formulate the sparsity of feature signal and use the `1-norm to formulate the sparsity of the corruption induced by mis-associations. Based on the sparse representation, the feature signal are estimated by solving a semidefinite program (SDP) which is convex. We also provide an iterative method for solving this SDP via the alternating direction method of multipliers (ADMM) where each iteration involves closed-form computation. With the estimated feature signal, re-filtering is performed to estimate the kinematic states of the targets, where the association makes use of both kinematic and feature information. Simulation results are presented to illustrate the performance of the proposed algorithm in a radar application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model

Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...

متن کامل

A Comparison of Two Hypothesis Generation Algorithms in JPDAF Multiple Target Tracking

Two algorithms for hypothesis generation in Multiple Target Tracking (MTT) with Joint Probabilistic Data Association Filter (JPDAF) have been developed and compared. The known Depth First Search (DFS) algorithm has been used as base approach. Some worst case examples have been used to compare effectiveness of the two program implementations in C++. The results proved that the recursive procedur...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Combining of IMM filtering and DS data association for multitarget tracking

The tracking of targets in road situation represents a challenge for both the measurement to track association and the positional estimation algorithms. Previous simulation have shown that the data association method based on evidence theory has a good performance, compared with the Nearest Neighbor (NN) and cheap JPDAF method, moreover it has proved that the Interacting Multiple Models (IMM) m...

متن کامل

Sequential Monte Carlo methods for multiple target tracking and data fusion

The classical particle filter deals with the estimation of one state process conditioned on a realization of one observation process. We extend it here to the estimation of multiple state processes given realizations of several kinds of observation processes. The new algorithm is used to track with success multiple targets in a bearings-only context, whereas a JPDAF diverges. Making use of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.08254  شماره 

صفحات  -

تاریخ انتشار 2017